2018-09-01から1ヶ月間の記事一覧

ノンパラメトリック・ベイズ実践編2 回帰

まず、単純に線形回帰 s <- rnorm(n,0,1) head(s) m <- matrix(s,ncol=2) head(m) lm_res <- lm(m[,2] ~ m[,1]) lm_res plot(m) abline(lm_res) pythonで行こう Scikit learn の gaussian process regression そのExamplesの一つ カーネル関数から、値のsimi…

ノンパラメトリック・ベイズ実践編

Non-parametric bayesian clustering Data set simulation n <- 1000 d <- 4 k <- 5 s <- sample(1:k,n,replace=TRUE) m <- matrix(rnorm(d*k,sd=6),k,d) X <- matrix(0,n,d) for(i in 1:k){ tmp <- which(s == i) r <- matrix(rnorm(d * length(tmp))) X[tm…

インフォグラフィックとデータ視覚化

[データ視覚化][インフォグラフィック] データ視覚化とインフォグラフィック。 統計学・データサイエンスの分野では、データを解りやすく伝える技術としてデータ視覚化(data visualization)もあります 両者には似ている点もありますが、異なる点もあります。…

引越しました

2018/09/04に引っ越しました。 引越し後(はてなブログ) 引越し前(はてなダイアリー)

ノンパラ・ベイズ 夏休み集中セミナーメモ

9月1日 パラとノンパラの基礎概念 資料1『Parametric vs Nonparametric Models』 パラは有限個パラメタ、ノンパラは無限個パラメタのモデル 無限個パラメタのモデルとはどういうことかをわかることが大事 ノンパラベイズは無限個パラメタを想定しつつ、実…

ノンパラ・ベイズ 夏休み集中セミナーメモ0

予定 9月1日(パラとノンパラの基礎概念。ノンパラ検定) 9月17日(ノンパラ・ベイズの短いチュートリアル) 9月22日(長文資料のつまみ食い。R・パイソンで遊ぶ、その1) 9月24日(長文資料のつまみ食い。R・パイソンで遊ぶ、その2) 参加者 A(統計遺…