> Orthodont
Grouped Data: distance ~ age | Subject
distance age Subject Sex Male
1 26.0 8 M01 Male 1
2 25.0 10 M01 Male 1
3 29.0 12 M01 Male 1
4 31.0 14 M01 Male 1
5 21.5 8 M02 Male 1
6 22.5 10 M02 Male 1
7 23.0 12 M02 Male 1
8 26.5 14 M02 Male 1
>
> library(nlme)
> res.lme <- lme(distance~1+age+Male+Male*age,data=Orthodont,random=~1+age|Subject)
>
> res.iee <- gee(distance~1+age+Male+Male*age,data=Orthodont,
+ id=Orthodont$Subject,family=gaussian,scale.fix=TRUE, corstr="independence")
Beginning Cgee S-function, @(
running glm to get initial regression estimate
(Intercept) age Male age:Male
17.3727273 0.4795455 -1.0321023 0.3048295
警告メッセージ:
In gee(distance ~ 1 + age + Male + Male * age, data = Orthodont, :
Scale parameter fixed at 1.000000 with Gaussian variance function
>
> res.lm <- lm(distance~1+age+Male+Male*age, data=Orthodont)
>
> res <- matrix(nrow=4, ncol=4)
> colnames(res) <- names(res.gee$coefficients)
> rownames(res) <- c("GEE","LME","IEE","LM")
> res[1, ] <- res.gee$coefficients
> res[2, ] <- res.lme$coefficients$fixed
> res[3, ] <- res.iee$coefficients
> res[4, ] <- res.lm$coefficients
> round(res,3)
(Intercept) age Male age:Male
GEE 17.397 0.478 -1.074 0.310
LME 17.373 0.480 -1.032 0.305
IEE 17.373 0.480 -1.032 0.305
LM 17.373 0.480 -1.032 0.305