blog <- read.table("blog.txt",col.names=c("統計遺伝学","応用数学"))
ryamada.two <- ts(blog, start=c(2005,1), end=c(2016, 11), frequency=12)
plot(ryamada.two,plot.type="single",col=1:2)
ryamada22 <- ts(blog$統計遺伝学, start=c(2005,1), end=c(2016, 11), frequency=12)
ryamada <- ts(blog$応用数学, start=c(2005,1), end=c(2016, 11), frequency=12)
ryamadaall <- ts(blog$統計遺伝学+blog$応用数学, start=c(2005,1), end=c(2016, 12), frequency=12)
fit <- stl(ryamada, s.window="period")
fit22 <- stl(ryamada22, s.window="period")
fitall <- stl(ryamadaall,s.window="period")
ts.data<- ryamada.two
ts.seasonal <- ts(cbind(fit22[[1]][,1],fit[[1]][,1]), start=c(2005,1), end=c(2016, 11), frequency=12)
ts.trend <- ts(cbind(fit22[[1]][,2],fit[[1]][,2]), start=c(2005,1), end=c(2016, 11), frequency=12)
ts.residual <- ts(cbind(fit22[[1]][,3],fit[[1]][,3]), start=c(2005,1), end=c(2016, 11), frequency=12)
op <- par(mfcol = c(2,2))
op <- par(mar = c(0, 4, 0, 3), oma = c(5, 0, 4, 0), mfcol = c(4,1))
plot(ts.data,plot.type="single",col=1:2)
plot(ts.seasonal,plot.type="single",col=1:2)
plot(ts.trend,plot.type="single",col=1:2)
plot(ts.residual,plot.type="single",col=1:2)
plot(fit,main="応用数学",set.pars = NULL)
plot(fit22,main="遺伝統計学",set.pars = NULL)
matplot(cbind("応用数学"=fit[[1]][,1],"統計遺伝学"=fit22[[1]][,1]),type="l",)
monthplot(fit)
monthplot(fit22)
monthplot(fitall)
library(forecast)
seasonplot(fit)
seasonplot(fit22)
seasonplot(fitall)
plot(blog$V1,blog$V2,type="l")
ryamada22.year <- ryamada.year <- rep(0,12)
for(i in 1:12){
tmp <- (1:12) + (i-1) * 12
points(blog$V1[tmp],blog$V2[tmp],col=i,pch=20)
ryamada22.year[i] <- sum(blog$V1[tmp])
ryamada.year[i] <- sum(blog$V2[tmp])
}
plot(ryamada22.year,ryamada.year)
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1761 50
2401 374
4070 339
3420 345
3314 340
3438 308
5042 501
5004 355
5114 226
4662 0
5283 0
5875 0
6439 0
5908 0
6275 0
5015 0
5198 0
5185 0
5901 0
6045 0
6412 0
5060 0
5391 0
7388 0
9132 0
7705 0
9763 0
7296 0
6216 0
8217 0
9015 0
9604 0
10856 0
8005 0
9175 0
11059 0
10367 0
9370 0
9982 0
7466 0
6063 0
6870 0
7899 0
9560 0
9687 0
6561 0
6446 0
8314 0
7633 0
7185 0
7479 0
6986 0
5830 0
5144 0
6066 0
7262 0
6792 325
6097 1316
6105 1532
8522 2220
8761 3164
7282 2681
8289 3037
7310 2158
5847 1671
7167 1983
8290 2433
8524 2318
8787 2848
5989 2107
6618 2320
7160 2704
7390 2619
7112 2660
8509 3765
8023 3955
6112 3305
7235 3934
9040 4607
9649 4899
9411 5259
7081 4317
6240 4151
8142 5290
8362 5597
8265 5325
8868 5697
7081 4825
5975 4229
7051 5033
8364 5241
7610 5211
7910 6200
6354 4987
6454 4311
8531 5482
9522 6159
9011 5973
9542 6004
7537 4683
6996 4115
7947 5342
8684 5765
9141 5876
9083 6301
7450 5280
7228 5351
8937 5741
8903 6008
8801 6118
9855 7017
7858 5800
6683 5480
9688 5817
8047 5366
8715 5896
8633 5970
6310 4790
7115 4451
7641 5696
7584 5942
7775 6165
8636 5955
7176 6729
7578 5613
7862 5941
9263 6302
9457 6374
10824 7664
8887 6036
8469 5445
7060 5679
9027 6805