- 一昨日,昨日からの続き
- 資料(Notes on Dierential Geometry and Lie Groups)
- 1 Introduction to Manifolds and Lie Groups
- 1.1 指数マップ
- 指数行列
- たとえばskew symmetric matrixの指数行列は回転行列
exp.m <- function(A,n){
eigen.out<-eigen(A)
V<-eigen.out[[2]]
U<-solve(V)
B<-diag(exp(eigen.out[[1]]*n))
X <- V%*%B%*%U
return(list(matrix = X, eigen.vs <- eigen.out[[1]]))
}
n <- 2
K <- 10
A <- matrix(runif(n^2)*K,n,n)
diag(A) <- 0
A <- A +t(A)
A[lower.tri(A)] <- -A[lower.tri(A)]
A
As <- list()
t <- seq(from=0,to=10,length=1000)
for(i in 1:length(t)){
As[[i]] <- Re(exp.m(A,t[i])$matrix)
}
x <- runif(n)
X <- matrix(0,length(t),n)
for(i in 1:length(t)){
X[i,] <- As[[i]] %*% x
}
plot(as.data.frame(Re(X)))
plot(apply(Re(X)^2,1,sum))
-
- は
n <- 5
K <- 1
A <- matrix(runif(n^2)*K,n,n)
exp.A <- Re(exp.m(A,1)$matrix)
exp(sum(diag(A)))
det(exp.A)